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1 Introduction
At the 1973 Joint AMS-MAA (American Mathematical Society Mathematical Asso-
ciation of America) Conference on the Influence of Computing on Mathematical Re-
search and Education Peter HENRICI of Eidgenossische Technische Hochschule coined
the terms "algorithmic mathematics" and "dialectic mathematics" and discussed the
desirable equilibrium of these two polarities [8; see also 4, Chapter 4]. In this talk I
will borrow these two terms and attempt to synthesize the two aspects from a peda-
gogical viewpoint with illustrative examples gleaned from mathematical developments
in Eastern and Western cultures throughout history. This paper is to be looked upon
as a preliminary version of the text of my talk, which will surely suffer from the lack
of the much needed reflection which usually arises after the talk and the much desired
stimulation which is brought about by the audience during the talk.

Maybe at the outset I should beseech readers to bear with a more liberal usage of
the word "algorithm" in this talk, viz any well-defined sequence of operations to be
performed in solving a problem, not necessarily involving branching upon decision or
looping with iteration. In particular, this talk does not aim at probing the difference
and similarity between the way of thinking of a mathematician and a computer scientist.
(The latter question certainly deserves attention. Interested readers may wish to consult
the text of a 1979 talk by Donald KNUTH [9].) Hopefully, the meaning I attach to the
terms "algorithmic mathematics" and "dialectic mathematics" will become clearer as
we proceed. Let me quote several excerpts from the aforementioned paper of Henrici
to convey a general flavour before we start on some examples:

"Dialectic mathematics is a rigorously logical science, where state-
ments are either true or false, and where objects with specified
properties either do or do not exist. Algorithmic mathematics is
a tool for solving problems. Here we are concerned not only with
the existence of a mathematical object, but also with the cre-
dentials of its existence. Dialectic mathematics is an intellectual
game played according to rules about which there is a high degree
of consensus. The rules of the game of algorithmic mathematics
may vary according to the urgency of the problem on hand.
Dialectic mathematics invites contemplation. Algorithmic math-
ematics invites action. Dialectic mathematics generates insight.
Algorithmic mathematics generates results." [8]

2 Examples of "algorithmic mathematics" and "di-
alectic mathematics"

My first example is a very ancient artifact dating from the 18th century B.C. (now
catalogued as the Yale Babylonian Collection 7289), a clay tablet on which was inscribed
a square and its two diagonals with numbers (in cuneiform expressed in the sexagesimal
system) 30 on one side and 1.4142129... and 42.426388... on one diagonal (see Figure
1).
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Figure 1
There is no mistaking its meaning, viz the calculation of the square root of 2 and

hence the length of the diagonal of a square with side of length 30. The historians
of mathematics Otto NEUGEBAUER and Abraham SACHS believe that the ancient
Babylonians worked out the square root of 2 by a rather natural algorithm based on
the following principle. Suppose x is a guess which is too small (respectively too large),
then 2/x will be a guess which is too large (respectively too small). Hence, their average

(x + 2/x) is a better guess. We can phrase this procedure as a piece of "algorithmic
mathematics" in solving the equation X2 2 = 0:

1
Set x1 = 1 and xn+1 = 2 (xn + 2/xn) for n > 1 .

Stop when xn achieves a specified degree of accuracy .

It is instructive to draw a picture (see Figure 2) to see what is happening. The picture
embodies a piece of "dialectic mathematics" which justifies the procedure:

e is a root of X = f (X) and e is in I = [a, b].
Let f and f' be continuous on I and I f/(x)I < K <1
for all x in I. If xi is in I and xn+1 = f (xn) for n > 1,
then lim xn =

nDo

Si

Figure 2
"Algorithmic mathematics" abounds in the ancient mathematical literature. Let

us continue to focus on the extraction of square root. In the Chinese mathematical
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classics Jiuzhang Suanshu [Nine Chapters On the Mathematical Art] compiled between
100B.C. and 100A.D. there is this Problem 12 in Chapter 4:

"Now given an area 55225 [square] bu. Tell: what is the side of
the square?
... The Rule of Extracting the Square Root: Lay down the given
area as shi. Borrow a counting rod to determine the digit place.
Set it under the unit place of the shi. Advance [to the left] every
two digit places as one step. Estimate the first digit of the root.
..." (translation in [3])

The algorithm is what I learnt in my primary school days. It yields in this case the
digit 2, then 3, then 5 making up the answer V55225 = 235. Commentaries by LIU Hiu
in the mid 3rd century gave a geometric explanation (see Figure 3) in which integers
a E {0,100, 200, ... , 900}, b E {0,10, 20, ... , 90}, c E {0,1, 2, ... , 9} are found such
that (a + b + c)2 = 55225.

Figure 3
A suitable modification of the algorithm for extracting square root gives rise to

an algorithm for solving a quadratic equation. One typical example is Problem 20 in
Chapter 9 of Jiuzhang Suanshu:

"Now given a square city of unknown side, with gates opening in
the middle. 20 bu from the north gate there is a tree, which is
visible when one goes 14 bu from the south gate and then 1775
bu westward. Tell: what is the length of each side?" (translation
in [3])

Letting x be the length of each side, we see that the equation in question is X2+34X =
71000. A slight modification of the picture in Figure 3 (see Figure 4) will yield a modified
algorithm.

a

z
41.,_-----

ate, e Ca+6)

Figure 4
The same type of quadratic equations was studied by the Islamic mathematician

Muhammad ibn Musa AL-KHWARIZMI in his famous treatise Al-kitab al-muhtasar fi
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hisab al-jabr wa-l-muqabala [The Condensed Book On the Calculation of Restoration
And Reduction] around 825A.D. The algorithm exhibits a different flavour from the
Chinese method in that a closed formula is given. Expressed in modern day language,
the formula for a root x of X2 +bX = c is x = ./(b/2)2 c (b /2). Just as in the Chinese
literature, the "algorithmic mathematics" is accompanied by "dialectic mathematics"
in the form of a geometric argument (see Figure 5).

Figure 5
The author concluded by saying, "We have now explained these things concisely by

geometry in order that what is necessary for an understanding of this branch of study
might be made easier. The things which with some difficulty are conceived by the eye
of the mind are made clear by geometric figures."

3 Intertwining of "algorithmic mathematics" and
"dialectic mathematics"

Let us come back to the equation X2 2 = 0. On the algorithmic side we have
exhibited a constructive process through the iteration xn+i = a (xn, + 2/x,i) which
enables us to get a solution within a demanded accuracy. On the dialectic side we
can guarantee the existence of a solution based on the Intermediate Value Theorem
applied to the continuous function f (x) = x2 2 on the closed interval [1, 2]. The two
strands intertwine to produce further results in different areas of mathematics, be they
computational results in numerical analysis or theoretic results in algebra, analysis or
geometry. At the same time the problem is generalized to algebraic equations of higher
degree. On the algorithmic side there is the work of QIN Jiushao who solved equations
up to the tenth degree in his 1247 treatise, which is equivalent to the algorithm devised
by William George HORNER in 1819. On the dialectic side there is the Fundamental
Theorem of Algebra and the search of a closed formula for the roots, the latter problem
leading to group theory and field theory in abstract algebra. In recent decades, there has
been much research on the constructive aspect of the Fundamental Theorem of Algebra,
which is a swing back to the algorithmic side. A classic example to illustrate this back-
and-forth movement between "algorithmic mathematics" and "dialectic mathematics"
is the work of Paul GORDAN and David HILBERT in the theory of invariants at the
end of the 19th century. Gordan was hailed as the "King of the Invariants" and in 1868
established the existence of a finite basis for the binary forms through hard and long
calculations covering page after page. The work was so laborious already for the binary
forms that people could not push forth the argument for forms of higher degree. Hilbert
came along in 1888 to give an elegant short existence proof of a finite basis for forms
of any degree. It is frequently reported that Gordan commented, upon learning of the
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proof by Hilbert, "This is not mathematics. This is theology." What is less frequently
mentioned is that Hilbert worked hard to find a constructive proof of his theorem on
basis. He succeeded in 1892, finding a constructive proof through knowledge of the
existence proof. Upon learning of this constructive proof, Gordan was reported to say,
"I have convinced myself that theology also has its merits." [12, Chapter V]

Thus we see that it is not necessary and is actually harmful to the development
of mathematics to separate strictly "algorithmic mathematics" and "dialectic mathe-
matics". Traditionally it is held that Western mathematics, developed from that of
the ancient Greeks, is dialectic, while Eastern mathematics, developed from that of the
ancient Egyptians, Babylonians, Chinese and Indians, is algorithmic. As a statement in
broad strokes this thesis has an element of truth in it, but under more refined examina-
tion it is an over-simplification. Let me illustrate with a second example. This example
may sound familiar to readers, viz the Chinese Remainder Theorem. The source of the
result, and thence its name, is a problem in Sunzi Suanjing [Master Sun's Mathematical
Manual] compiled in the 4th century that reads:

"Now there are an unknown number of things. If we count by
threes, there is a remainder 2; if we count by fives, there is a
remainder 3; if we count by sevens, there is a remainder 2. Find
the number of things." (translation in [10])

To solve this problem, which can be written in modern terminology as a system of
simultaneous linear congruence equations

x 2 (mod 3), x H 3 (mod 5), x H. 2 (mod 7) ,

the text offers three magic numbers 70, 21, 15 which are combined in a proper way to
yield the least positive solution

2 x 70 + 3 x 21 + 2 x 15 105 x 2 = 23 .

In his treatise Suanfa Tongzong [Systematic Treatise on Arithmetic] of 1592 CHENG
Dawei even embellished this solution as a poem which reads:

" 'Tis rare to find one man
Of seventy out of three,

There are twenty one branches
On five plum blossom trees.

When seven disciples reunite
It is in the middle of the month,

Discarding one hundred and five
You have the problem done."

It is interesting to note (but I am no qualified historian of mathematics to trace the
transmission of knowledge) that the same problem with its solution also appears in
Liber Abaci of 1202 by Leonardo of Pisa, better known as FIBONNACI. It reads:

"Let a contrived number be divided by 3, also by 5, also by 7; and
ask each time what remains from each division. For each unity
that remains from the division by 3, retain 70; for each unity that
remains from the division by 5, retain 21; and for each unity that
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remains from the division by 7, retain 15. And as much as the
number surpasses 105, subtract from it 105; and what remains to
you is the contrived number." [4, p.188]

In ancient China the problem was handed down from generation to generation, grad-
ually attaining a glamour which was attached to events as disparate as a legendary
enumeration of the size of his army by the great general HAN Xin in the late 3rd cen-
tury B.C. to a parlour trick of guessing the number of a collection of objects. (The
story about Han Xin may explain a common confusion some people make in identifying
the author of Sunji Suanjing with another Sun Ji who flourished seven centuries earlier
and who was famous for his treatise on military art.) This much is a familiar story
told and re-told. We will turn to look at the problem from an angle not as commonly
adopted by popular accounts.

The first time I myself encountered the name of the Chinese Remainder Theorem
(CRT) explicitly mentioned was when I, as a student, read Chapter V of Commutative
Algebra by Oscar ZARISKI and Pierre SAMUEL [14]. The name is given to Theorem
17 about a property of a Dedekind domain, with a footnote that reads:

"A rule for the solution of simultaneous linear congruences, es-
sentially equivalent with Theorem 17 in the case of the ring J
of integers, was found by Chinese calendar makers between the
fourth and the seventh centuries A.D. It was used for finding the
common periods to several cycles of astronomical phenomena."

In many textbooks on abstract algebra the CRT is phrased in the ring of integers Z
as an isomorphism between the quotient ring Z/Mi MnZ and the product Z /M1Z x

x Z/MnZ where M2, MM are relatively prime integers for distinct i, j. A more general
version in the context of a commutative ring with unity R guarantees an isomorphism
between RI fl In and R//1 x x R//n where /1, . , In are ideals with /i = R
for distinct i, j. Readers will readily provide their own "dialectic" proof of the CRT.

For many years I have been curious as to how the abstract CRT develops from
the concrete problem in Sunzi Suanjing. One mostly cited (but not quite accurate)
account appears in Volume II of History of the Theory of Numbers by Leonard Eugene
DICKSON which says:

"Sun-Tsn, in a Chinese work Suan-ching (arithmetic), about the
first century A.D., gave in the form of an obscure verse a rule
called t'ai-yen (great generalization) to determine a number hav-
ing the remainders 2, 3, 2, when divided by 3, 5, 7, respectively.
..." [5, Chapter II]

This account probably originated from a series of articles published in the Shanghai
newspaper North-China Herald titled "Jottings on the science of the Chinese" written
by the British missionary Alexander WYLIE of the London Missionary Society. Wylie
was one of the most prominent pioneers in the study of Chinese Science after Antoine
GAUBIL of the first half of the 18th century and Edouard BIOT of the first half of the
19th century. In No. 116 (October 1852) of the North-China Herald he wrote:

"The general principles of the Ta-yen are probably given in their
simplest form, in the above rudimentary problem of Sun Tsze;
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Subsequent authors enlarging on the idea, applied it with much
effect to that complex system of cycles and epicycles which form
such a prominent feature in the middle-age astronomy of the Chi-
nese. The reputed originator of this theory as applied to astron-
omy is the priest Yih Hing who had scarely finished the rough
draft of his work Ta-yen leih shcio, when he died A.D. 717. But it
is in the "Nine Sections of the art of numbers" by Tsin Keu chaou
that we have the most full and explicit details on this subject. ..."

The account of Wylie was subsequently translated into German by K.L. BIERNATZKI
in 1856, elaborated by L. MATTHIESSEN in 1874/76, who pointed out that the Chi-
nese result is same as that expounded by Carl Friedrich GAUSS in Section II of his
Disquisitiones Arithmeticae of 1801 [6]. (Kurt MAHLER clarified this mistaken point
in a short paper published in Mathematische Nachrichten in 1958 [11].)

The author of the 1247 treatise Shushu Jiuzhang [Mathematical Treatise in Nine
Sections] referred to in Wylie's account was one of the most famous Chinese mathe-
maticians of the 13th century by the name of QIN Jiushao (Tsin Keu chaou). From
the first two problems in Book I we can discern the source of the problem as well as the
naming of the technique he introduced, viz "Da Yan (Great Extension) art of searching
for unity". Problem 1 states:

"In the Yi Jing [Book of Changes] it is said, "The Great Extension
number is 50, and the Use number is 49." Again it is said, "It is
divided into 2 [parts], to represent the spheres; 1 is suspended to
represent the 3 powers; they are drawn out by 4, to represent the 4
seasons; three changes complete a symbol, and eighteen changes
perfect the diagrams." What is the rule for the Extension and
what are the several numbers?" (translation in Wylie's article)

This is a problem about the art of fortune telling by combination of blades of shi grass.
It provides an exercise about residue classes of congruence. Problem 2 states:

"Let the solar year be equal to 3654 days, the moon's revolution,
2911 days, and the Jia Zi, 60 days. Suppose in the year A.D.
1246, the 53rd day of the Jia Zi is the Winter solstice or 1st day
of the Solar year; and the 1st day of the Jia Zi is the 9th day
of the month. Required the time between two conjunctions of
the commencement of these three cycles; also, the time that has
already elapsed, and how much as yet to run." (translation in
Wylie's article)

This is a problem about the reckoning of calendar where the number of days was counted
from a beginning point called the Shang Yuan, that being the coinciding moment of
the winter solstice, the first day of the lunar month and also the first day of the cycle
of sixty.

Let us phrase the "Da Yan art of searching for unity" in modern terminology to
illustrate the algorithmic thinking embodied therein. The system of simultaneous con-
gruence equation is

x Al (mod M1), x = A2 (mod M2), , x An (mod Mn)

9



Qin's work includes the general case when MI, , Mn are not necessarily mutually
relatively prime. His method amounts to arranging to have mi IA with ml, . , mn
mutually relatively prime and LCM(mi, , mn) = LCM(Mi, , Mn). An equiva-
lent problem is to solve x Ai (mod mi) for i E {1, . . . , n}, which is solvable if and
only if GCD(Mi, MO divides Ai A3 for all i j. The next step in Qin's work reduces
the system (in the case MI, , Mn are mutually relatively prime) to solving separately
a single congruence equation of the form kzbi H 1 (mod Mi). Finally, in order to solve
the single equation kb a- 1 (mod m) Qin uses reciprocal subtraction, equivalent to the
famous euclidean algorithm, to the equation until 1 (unity) is obtained.

Writing out the algorithm in full, we have

m = bq1 + ri,b = rig2 + r2, r1 = r2q3 + r3, etc. with m > b > r1 > r2 >

so that ultimately ri becomes 1. Set k1 = qi, then k1b H. gib -= r1 (all congruences
refer to modulo m). Set k2 = k1g2 + 1, then k2b k1g2b + r1q2 + b r2.
Set k3 = k2g3 + k1, then k3b = k2q3b + k1b = r2q3 r1 r3. Set k4 = k3q4 + k2,
then k4b k3g4b + k2b r3q4 + r2 7-4, etc. In general, we have kib (-1)iri
(mod m). This algorithm provides a method for solving kb 1 (mod 7n) as well as
a proof that what is calculated is a solution. The method is to start with (1, b) and
change (ki,ri) to (ki+i,ri+i), stopping when ri = 1 and i is even. Then ki is a solution.
For example, to solve 14k H 1 (mod 19) we start with (1, 14), which is changed to
(1, 5), then to (3, 4), then to (4, 1), then to (15, 1). Hence 15 is a solution. When the
calculation is performed by manipulating counting rods on a board as in ancient times,
the procedure is rather streamlined. Within this algorithmic thinking we can discern
two points of dialectic interest. The first is how one can combine information on each
separate component to obtain a global solution. This feature is particularly prominent
when the result is formulated in the CTR in abstract algebra. The second is the use of
linear combination which affords a tool for other applications such as for curve fitting
or the Strong Approximation Theorem in valuation theory.

It is not surprising that the euclidean algorithm is used in Qin's work. The principle
was familiar to the ancient Chinese who explained it in Chapter 1 of Jiuzhang Suanshu
as:

"Rule for reduction of fractions: If [the denominator and numera-
tor] can be halved, halve them. If not, lay down the denominator
and numerator, subtract the smaller number from the greater. Re-
peat the process to obtain the dengsu (greatest common divisor).
Reduce them by the dengsu." (translation in [3])

It is called the euclidean algorithm in the Western world because it is contained in the
first two propositions of Book VII of Elements compiled by EUCLID in about 300 B.C.
If we read these two propositions we would be struck by its strong algorithmic flavour.
Proposition 1 states:

"Two unequal numbers being set out, and the less being contin-
ually subtracted in turn from the greater, if the number which
is left never measures the one before it until an unit is left, the
original numbers will be prime to one another." (translation in
[1)
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This is followed by Proposition 2 which says:

"Given two numbers not prime to one another, to find their great-
est common measure." (translation in [7])

A reading of the proofs of these two propositions will offer the reader a more balanced
view of the style of the book Elements. The kind of mathematics developed in El-
ements is traditionally seen as an archetype of "dialectic mathematics". This more
balanced view betrays the over-simplified belief that Eastern-Western mathematics is
synonymous with algorithmic-dialectic mathematics. Furthermore, some people even
stress above all only the formal and rigorous aspect of "dialectic mathematics". I will
now follow the reasoning put forth by S.D. AGASHE [1] to reveal the (somewhat algo-
rithmic) background and motives of the mathematics contained in the first two books
of Elements. Proposition 14 in Book II addresses the construction of a square equal
(in area) to a given rectilinear figure. It seems the problem of interest is to compare
two rectilinear figures, whose one-dimensional analogue of comparing two line segments
is easy. For two line segments we can put one onto the other and see which one lies
completely inside the other (or is equal to the other). Actually this is what Proposition
3 of Book I sets out to do:

"Given two unequal straight lines, to cut off from the greater a
straight line equal to the less." (translation in [7])

To justify this result we have to rely on Postulate 1, Postulate 2 and Postulate 3.
Unfortunately, for rectilinear figures the problem is no longer as straightforward, except
for the case of two squares when we can reduce the investigation to the sides of each
square by putting one onto the other so that one square lies completely inside the other
(or is equal to the other). Incidentally we need Postulate 4 to guarantee that. Hence we
have found a way to compare two rectilinear figures, viz we try to reduce a rectilinear
figure to a square, which is the content of Proposition 14 in Book II:

"Construct a square equal to a given rectilineal figure." (transla-
tion in [7])

Let us first try to reduce a rectangle to a square. A rectangle can be readily converted
to an L-shaped gnomon which is the difference between two squares. Actually that is
the content of Proposition 5 in Book II (see Figure 6).

C

Figure 6
To make the difference of two squares a square we can ask a reversed question

about the sum of two square being equal to a square. The latter question is answered
by the famous Pythagoras' Theorem which is Proposition 47 in Book I! To complete
the picture we must construct a rectangle equal to a rectilinear figure. By decomposing
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a rectilinear figure into triangles and by contructing a rectangle (or more generally a
parallelogram with one angle given) equal to each triangle, the problem will be solved.
The construction of a parallelogram (with one angle given) equal to a triangle is the
content of Proposition 42, Proposition 44 and Proposition 45 in Book I, whose proofs
all rely on Postulate 5 about parallelism. Viewed in this way, the axiomatic approach
exemplified in Elements gains a richer meaning.

4 Pedagogical viewpoint
I now come to the pedagogical viewpoint. In the first part of my talk I tried to show
how the two aspects "algorithmic mathematics" and "dialectic mathematics"
intertwine with each other. It reminds me of the "yin" and "yang" in Chinese philosophy
in which the two aspects complement and supplement each other with one containing
some part of the other. (To go even further than that I would even borrow a metaphor
probably from the biologist and popular science writer Stephen Jay GOULD: Is a zebra
a white animal with black stripes or a black animal with white stripes?) If that is
the case, then in the teaching of mathematics we should not just emphasize one at the
expense of the other. When we learn something new we need first to get acquainted
with the new thing and to acquire sufficient feeling for it. A procedural approach helps
us to prepare more solid ground to build up subsequent conceptual understanding. In
turn, when we understand the concept better we will be able to handle the algorithm
with more facility. In the mathematics education community there has been a long-
running debate on procedural vs conceptual knowledge, or process vs object in learning
theory, or computer vs no-computer learning environment. In a more general context
these are all related to a debate on algorithmic vs dialectic mathematics, which are
actually not two opposing forces but can be joined to provide an integrated way of
learning and teaching. I will now give five examples on learning and teaching, with the
last two having more to do with research. I apologize for the obvious lopsided emphasis
on algebra in these five examples. My excuse is that they all have to do with my own
classroom experience.
(1) Solving a system of linear equations by reduction to echelon form is clearly algo-
rithmic in nature. (By the way, the algorithm was explicitly recorded and explained in
Chapter 8 of Jiuzhang Suanshu. The title of the chapter itself is telling Fangcheng,
which means literally "the procedure of calculation by a rectangular array" .) However,
a clear understanding of this working does much to help us understand the more ab-
stract and theoretical part of linear algebra and see why many of the concepts and
definitions make sense. I will not therefore regard an exercise in manipulating a system
of linear equations as a routine exercise for those who are less apt at coping with ab-
stract theory, but as a preparation for it. Suitably dressed up, even a routine exercise
can become a useful lead into interesting and useful theory. As an example, we can ask:

"Let W1 be the subspace in spanned by (1, 1, 2), (3, 0, 1),
(1, 2, 5) and let W2 be the subspace in R3 spanned by (4, 1, 1),
(1, 4, 1), (2, 7, 3). Calculate the intersection of W1 and W2.
Describe the geometry of it."

An ad hoc calculation in this concrete case supported by a clear geometric picture, with
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(4, 1, 1) lying on the line of intersection of the two hyperplanes W1 and W2, leads to a
more theoretical discussion in a general situation.
(2) As a pupil I came across in school algebra many homework problems which ask for
writing expressions like p3q + pq3 or 5p2 3pq + 5q2 or p4 + q4 or ... in terms of a, b, c
where p, q are the roots of aX2 + bX + c = 0. Each time I could arrive at an answer,
maybe sometimes after long calculation. I used to query why an answer must come up
for such so-called "symmetric" expressions. It was only many years later that I came
to understand this in the form of the Fundamental Theorem on Symmetric Polynomial.
There are different proofs for the result and it can be formulated in a rather general
context of polynomials over a commutative ring with unity. But I still find it helpful to
work out one example in an algorithmic fashion to get a flavour of the dialectic proof.
For instance let us try to express the polynomial

+ xpq + xi2x23 x22x33 2x13

in terms of a1 = +X2 + X3, a2 = X iX2+ X2X3+ X3X1, a3 = X1X2X3. Naturally we
can write the polynomial in X1, X2, X3 as a polynomial in X3 with coefficients involving
Xi, X2, i.e.

f (X1,x2, x3) = + + (x + nx: + pc? + xD)q

Applying our knowledge of polynomials in X1, X2 (after so much working in school
algebra), we arrive at

f (Xi, X2, X3) = 7-17-22 + (Ti 3717-2) X32 + (Ti 27-2)X1

where Ti = X1 + X2, T2 = X1X2. Now, write a1 = T1 + X3, a2 = T2 + 71 X3, a3 = T2X3.
From the first two relationships we can express T1, T2 in terms of a1, a2 and X3, i.e.
Tl = a1 X3, T2 = a2 a1X3 + X3. Substituting T2 back to the third relationship
we can express XI = a3 a2X3 + a-14 Hence we can express the coefficients 7-171,
Ti 3T1T2, r, 272 in terms of a1, a2, a3 and X3 up to the second power. Substituting
back to f (Xi, X2, X3) we obtain, after some rather tedious (but worthwhile!) work,

f (Xi, X2, X3) = 0'10'22 2010'3 (720.3 .

Note that suddenly all terms involving X3 vanish and that is the answer we want!
Coincidence in mathematics is rare. If there is any coincidence, it usually begs for
an explanation. The explanation we seek in this case will lead us to one proof of the
Fundamental Theorem on Symmetric Polynomial.
(3) The simplest type of extension field discussed in a basic course on abstract algebra is
the adjunction of a single element algebraic over the ground field, say Q. The element
a, say in C, is said to be algebraic over Q if a is the zero of some polynomial with
coefficients in Q. The dialectic aspect involves the "finiteness" of the extension field
Q(a) viewed as a finite-dimensional vector space over Q. It is helpful to go through
some algorithmic calculation to experience the "finiteness". For instance, take a =
It is easy to see that a typical element in Q(a) (by knowing what Q(a) stands for) is
of the form (a + ba)I (c + da) where a, b, c, d are in Q, because any term involving a
higher power of a can be ground down to a linear combination (over Q) of 1 and a.
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The procedure on conjugation learnt in school allows us to revert the denominator as
part of the numerator, i.e.

1/(c + da) (c da) /(c + da)(c da) = (c da) /(c2 2d2)

= [(cl(c2 2d2)] + [(d)/(c2 2d2)]a .

Hence, a typical element in Q(a) is of the form a + ba where a, b are in Q. It is more
instructive to follow with a slightly more complicated example such as a = +
It is not much harder to see that we can confine attention to linear combinations of
1, a, a2, a3, but this time it is much more messy to revert the denominator as part
of the numerator. This will motivate a more elegant dialectic proof modelled after
the algorithmic calculation for a = Another useful piece of knowledge about
algebraic elements is: If a and b (say in C) are algebraic over Q, then a + b is algebraic
over Q. The dialectic aspect involves the notion of "finiteness" by viewing Q(a, b) as
a finite-dimensional vector space over Q. Going through an algorithmic calculation
may help to consolidate understanding. For instance, take -V2, which is algebraic
over Q as a zero of X2 2, and take a which is algebraic over Q as a zero of

3. Try to find a polynomial with coefficients in Q such that .\/2- + 3 3 is a zero
of it. We can follow an algorithm which expresses X2 2 = (X .\)(X + V-2-)
and (X3 3) = (X a)(X aw)(X aw2) where a(E I'') is such that a3 = 3 and
w = 1), then consider the polynomial

g(X) = (X V2a)(X-1-\12- a)(X aw)(X+N/2aw)(XVaco2)(X+aw2)

which reduces after some calculation to X6 + 6X4 6X3 + 12X2 36X +1 (noting that
a3 = 3 and 1 + w + w2 = 0). It is certainly not incidental that ultimately no coefficient
involves or a or w ! Further enquiry will suggest a constructive proof of the general
result by making use of symmetric polynomials.
(4) To begin with a simple example, let z be a (complex) root other than 1 of the
equation X5 1 = 0, so z4 + z3 + z2 + z + 1 = 0, or (z1 + z4) + (z2 + z3) = 0. Write
rio = z1 + z4 and ni = z2 + z3 and note that no + = 1 and ton i = + = 1.
Hence, no, ni are roots of Y2 + Y 1 = 0, say

1 + 1
=

2 2

From no = z+1 we obtain z2noz+1 = 0 so that one value for z is z = 1(770+ 4) =
1[-1 + + V-10 24. This calculation is the basic idea Carl Friederich GAUSS
applied to solve the equation XN 1 = 0 where N is a prime number. (I have a
slight suspicion that Gauss was inspired by the work of Alexandre-Theophile VAN-
DERMONDE who solved that equation in a brilliant 1774 paper titled "Memoire sur
la resolution des equations" [13, Chapter 11 and Chapter 12].) The calculation will go
through in general if at each stage we can break up the sum of powers of z into two
halves, which is the case when N is of the form 22' + 1, i.e. N is a Fermat prime.
This is the theory of cyclotomy developed by GAUSS in Section VII of his Disquisi-
tiones Arithmeticae of 1801 in connection with his celebrated discovery in 1796 of the
constructibility of a regular seventeen-sided polygon by straight-edge and compasses
[6].
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We now go tangentially off the work of Gauss but take with us one crucial point:
express 770Th in the form ario + brh + c for some integers a, b, c. Let p be an odd prime of
the form 2f + 1 and g is a primitive root of p. Let Co = g2s E {0, 1, 2, ... , f 1}}
and Cl = g2s +1 is E 1, 2, ... , f 1}}, then {1, 2, ... ,p 1} is decomposed into the
disjoint union Co UCi. We call Co, C1 cyclotomic classes and (i, j) = +1) ncjI (with

j E {0, 1}) cyclotomic numbers. If 770 = > zt and iii = E zt, then it turns out that
tEC0 tEC1

770 + r11 = 1 and 7/071 = (1, 0)7/0 + (1, 1)771 + c where c is the number of 0 in Co +
(repetition counted). More generally, let p be a prime number and q = p' = e f +1 and g
is a generator of the multiplicative group of the finite field GF(q), which is decomposed
into a disjoint union Co U C1 U U Ce_i where Ci = {g"+ilS E {0, 1, 2, f 1}}
(cyclotomic class). We call (i, j) = I (Ci+l)nCil (with i, j E {0,1,... , e -1 }) cyclotomic
numbers. The fascinating property which comes out of the calculation is that, when
and only when (i, 0) = (f 1) /e for all i E {0,1,... ,e 1 }, then Co is a difference
set in GF(q), i.e. each nonzero element in GF(q) is the difference x y of the same
number of pairs of elements (x, y) in Co x Co. For instance, this is true for q = 11 so
that Co = {1, 3, 4, 5, 9}, the set of quadratic residues modulo 11, is a difference set. If
you look at all the differences (modulo 11) x y of pairs (x, y) of numbers in Co, you
will find each nonzero number appearing exactly twice. Research on difference sets is a
nice mixture of "algorithmic mathematics" and "dialectic mathematics".
(5) The last example is a personal anecdote about a piece of research work. Let me first
describe the problem. Let F be the finite field with q = ps elements, i.e. F = G F (q).
A function f : F C is called a nontrivial multiplicative character of F if f (0) = 0,
f(1) = 1 but f 1 on F* = F \ {0}, and f(bib2) = f(bi)f(b2) for all b1, b2 in F. In
this case, it is well-know that

Ef(b)f(b+ a) =
1 if a = 0 ;

(#)1 if a 0 .
bEF

Harvey COHN asks whether the converse is true: If f : F C is such that f (0) = 0,
f (1) = 1, I f (a)I = 1 for all a in F* and (#) holds, must f be a nontrivial multiplicative
character of F? In the summer of 1996 I could settle the real case (so that f (a) is
either 1 or 1 for nonzero a) with an affirmative answer when F is a prime field. That
much is "dialectic mathematics". I failed to extend the argument to the case when
F is not necessarily a prime field. Hence the work was put aside until my interest
was resurrected in the spring of 1999 when a young colleague, Stephen CHOI, gave
a seminar on the same problem arising in a different context, attacked by a different
approach. Naturally we joined forces to look at the general case. We noted that (#)
involves only the addition in F but not the multiplication in F. If we compose a specific
injective multiplicative character x : F p C of F with an additive bijection cp : F > F,
then f = x o co satisfies (#) since x satisfies (#). It remains to see if there exists any
additive bijection v, which is not multiplicative. I turned to "algorithmic mathematics"
by actually doing the calculation using a representation of F as the quotient ring of
G F(p)[X] modulo the ideal generated by an irreducible polynomial of degree s. One
day upon re-checking the calculation of some concrete cases, I found an error, which I
corrected. But in either case the original incorrect version and the correct version
( #) was satisfied. To my dismay more errors in the calculation were detected, but each
time, with correction or no correction, (#) was still satisfied. That made me become
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aware that more often than not, cp is not multiplicative. Finally we could prove this
and give a negative answer to the problem in the case of non-prime fields [2].

5 Epilogue
To conclude I would like to share with readers a Zen saying from the Tang monk
Qingyuan Weixin:

"Before I had studied Zen for thirty years, I saw mountains as
mountains, and waters as waters. When I arrived at a more inti-
mate knowledge, I come to the point where I saw the mountains
are not mountains, and waters are not waters. But now that I
have got its very substance I am at rest. For it is just that I
see mountains once again as mountains, and waters once again as
waters."
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